3.447 \(\int \frac{(a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac{7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=247 \[ \frac{2 \left (15 a^2 A-35 a b B-23 A b^2\right ) \sqrt{a+b \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{(-b+i a)^{5/2} (A+i B) \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{2 a (5 a B+8 A b) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{(b+i a)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)} \]

[Out]

-(((I*a - b)^(5/2)*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d) + ((I*a +
 b)^(5/2)*(A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d - (2*a*(8*A*b + 5*
a*B)*Sqrt[a + b*Tan[c + d*x]])/(15*d*Tan[c + d*x]^(3/2)) + (2*(15*a^2*A - 23*A*b^2 - 35*a*b*B)*Sqrt[a + b*Tan[
c + d*x]])/(15*d*Sqrt[Tan[c + d*x]]) - (2*a*A*(a + b*Tan[c + d*x])^(3/2))/(5*d*Tan[c + d*x]^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 1.17028, antiderivative size = 247, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.229, Rules used = {3605, 3645, 3649, 3616, 3615, 93, 203, 206} \[ \frac{2 \left (15 a^2 A-35 a b B-23 A b^2\right ) \sqrt{a+b \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{(-b+i a)^{5/2} (A+i B) \tan ^{-1}\left (\frac{\sqrt{-b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{2 a (5 a B+8 A b) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{(b+i a)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{b+i a} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

-(((I*a - b)^(5/2)*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d) + ((I*a +
 b)^(5/2)*(A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d - (2*a*(8*A*b + 5*
a*B)*Sqrt[a + b*Tan[c + d*x]])/(15*d*Tan[c + d*x]^(3/2)) + (2*(15*a^2*A - 23*A*b^2 - 35*a*b*B)*Sqrt[a + b*Tan[
c + d*x]])/(15*d*Sqrt[Tan[c + d*x]]) - (2*a*A*(a + b*Tan[c + d*x])^(3/2))/(5*d*Tan[c + d*x]^(5/2))

Rule 3605

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e
+ f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m -
 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a*A*d*(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1)
 + a*d*(n + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)*Tan[e + f*x] - b*(d*(A*b*c + a
*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (Inte
gerQ[m] || IntegersQ[2*m, 2*n])

Rule 3645

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*d^2 + c*(c*C - B*d))*(a + b*T
an[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), I
nt[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c
*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n + 1
) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac{7}{2}}(c+d x)} \, dx &=-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)}+\frac{2}{5} \int \frac{\sqrt{a+b \tan (c+d x)} \left (\frac{1}{2} a (8 A b+5 a B)-\frac{5}{2} \left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)-\frac{1}{2} b (2 a A-5 b B) \tan ^2(c+d x)\right )}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\\ &=-\frac{2 a (8 A b+5 a B) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)}+\frac{4}{15} \int \frac{-\frac{1}{4} a \left (15 a^2 A-23 A b^2-35 a b B\right )-\frac{15}{4} \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)-\frac{1}{4} b \left (22 a A b+10 a^2 B-15 b^2 B\right ) \tan ^2(c+d x)}{\tan ^{\frac{3}{2}}(c+d x) \sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\frac{2 a (8 A b+5 a B) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (15 a^2 A-23 A b^2-35 a b B\right ) \sqrt{a+b \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{8 \int \frac{\frac{15}{8} a \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-\frac{15}{8} a \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx}{15 a}\\ &=-\frac{2 a (8 A b+5 a B) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (15 a^2 A-23 A b^2-35 a b B\right ) \sqrt{a+b \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{1}{2} \left ((a-i b)^3 (i A+B)\right ) \int \frac{1+i \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx-\frac{\left (4 \left (\frac{15}{8} a \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-\frac{15}{8} i a \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )\right )\right ) \int \frac{1-i \tan (c+d x)}{\sqrt{\tan (c+d x)} \sqrt{a+b \tan (c+d x)}} \, dx}{15 a}\\ &=-\frac{2 a (8 A b+5 a B) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (15 a^2 A-23 A b^2-35 a b B\right ) \sqrt{a+b \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{\left ((a-i b)^3 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{(1-i x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac{\left (4 \left (\frac{15}{8} a \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-\frac{15}{8} i a \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )\right )\right ) \operatorname{Subst}\left (\int \frac{1}{(1+i x) \sqrt{x} \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{15 a d}\\ &=-\frac{2 a (8 A b+5 a B) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (15 a^2 A-23 A b^2-35 a b B\right ) \sqrt{a+b \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)}-\frac{\left ((a-i b)^3 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{1-(i a+b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{\left (8 \left (\frac{15}{8} a \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )-\frac{15}{8} i a \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-(-i a+b) x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{15 a d}\\ &=-\frac{(i a-b)^{5/2} (A+i B) \tan ^{-1}\left (\frac{\sqrt{i a-b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}+\frac{(i a+b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{i a+b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )}{d}-\frac{2 a (8 A b+5 a B) \sqrt{a+b \tan (c+d x)}}{15 d \tan ^{\frac{3}{2}}(c+d x)}+\frac{2 \left (15 a^2 A-23 A b^2-35 a b B\right ) \sqrt{a+b \tan (c+d x)}}{15 d \sqrt{\tan (c+d x)}}-\frac{2 a A (a+b \tan (c+d x))^{3/2}}{5 d \tan ^{\frac{5}{2}}(c+d x)}\\ \end{align*}

Mathematica [A]  time = 2.38991, size = 321, normalized size = 1.3 \[ \frac{-3 \left (8 a^2 A-15 a b B-10 A b^2\right ) \sqrt{a+b \tan (c+d x)}-4 \tan (c+d x) \left (-2 \left (15 a^2 A-35 a b B-23 A b^2\right ) \tan (c+d x) \sqrt{a+b \tan (c+d x)}+\left (10 a^2 B+22 a A b-15 b^2 B\right ) \sqrt{a+b \tan (c+d x)}+15 \sqrt [4]{-1} \tan ^{\frac{3}{2}}(c+d x) \left ((-a-i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{-a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )+(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt [4]{-1} \sqrt{a-i b} \sqrt{\tan (c+d x)}}{\sqrt{a+b \tan (c+d x)}}\right )\right )\right )+15 b (a B-2 A b) \sqrt{a+b \tan (c+d x)}-60 b B (a+b \tan (c+d x))^{3/2}}{60 d \tan ^{\frac{5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2),x]

[Out]

(15*b*(-2*A*b + a*B)*Sqrt[a + b*Tan[c + d*x]] - 3*(8*a^2*A - 10*A*b^2 - 15*a*b*B)*Sqrt[a + b*Tan[c + d*x]] - 6
0*b*B*(a + b*Tan[c + d*x])^(3/2) - 4*Tan[c + d*x]*(15*(-1)^(1/4)*((-a - I*b)^(5/2)*(A + I*B)*ArcTanh[((-1)^(1/
4)*Sqrt[-a - I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]] + (a - I*b)^(5/2)*(A - I*B)*ArcTanh[((-1)^(1/4
)*Sqrt[a - I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])*Tan[c + d*x]^(3/2) + (22*a*A*b + 10*a^2*B - 15*
b^2*B)*Sqrt[a + b*Tan[c + d*x]] - 2*(15*a^2*A - 23*A*b^2 - 35*a*b*B)*Tan[c + d*x]*Sqrt[a + b*Tan[c + d*x]]))/(
60*d*Tan[c + d*x]^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.939, size = 2653616, normalized size = 10743.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, algorithm="giac")

[Out]

Timed out